XDI型水性聚氨酯扩链剂
为了研究XDI型水性聚氨酯扩链剂比例对芳脂族的二异氰酸酯XDI型水性聚氨酯性能的影响,文中采用聚酯多元醇为软段,间苯二亚甲基二异氰酸酯(XDI)、亲水性的二羟甲基丙酸(DMPA)和XDI型水性聚氨酯扩链剂为硬段,合成了XDI型水性聚氨酯(XWPUs),研究了DMPA/BDO比例对聚氨酯乳液的粒径、耐水性、力学性能和耐热性的影响。
XDI型水性聚氨酯扩链剂研究发现,随着DMPA/BDO的比例从0.74到6.14逐渐增大,XWPUs聚氨酯乳液粒径从71.66nm增加到159.40nm,微相分离程度增加,样品薄膜的吸水率从1.87%增到12.17%。XWPUs薄膜的拉伸强度较高,均在20MPa左右,并具有较高的耐热性,失重5%时温度在280~250℃之间,但耐热温度随着DMPA/BDO值的增加而降低。XDI型水性聚氨酯结构中适宜的XDI型水性聚氨酯扩链剂比例,既能保证乳液的粒径和稳定性,又能使样品具有较好的耐水性、力学性能和耐热性。
考察了DMPA加入量的增加多粒径的影响。试验过程中,随着DMPA用量的增加,水性PUA乳液由乳白色不透明慢慢变成了半透明状,最后变成了溶液状泛红光。
这是由于随着DMPA含量的增加,乳液的平均粒径发生了变化:一方面,从热力学的观点看,乳液中聚合物的总自由能G不变,即ΔG=γΔA,当DMPA用量增大(即—COOH量增大)时,聚合物的亲水性增大,必然导致聚合物与水的界面张力Y减小及聚合物表面积A增大,当聚合物质量一定时,则表现为粒径变小;另一方面,由于亲水性的增加而产生的颗粒水膨胀性能使粒径增大,这种膨胀性随亲水性的增大而愈发明显。因此,羧基含量和粒径的关系是综合因素影响的结果,总的效果是使乳胶粒的粒径随羧基的含量增大而减小。因而从外观上看,乳液变得透明。
DMPA含量对体系粘度的影响。研究各种因素对PU分散体系粘度的影响。在其研究的体系中,当w (DMPA)≤2.4%时,不能形成稳定的乳液,所以粘度测试数据有误差(偏大);当w(DMPA)>2.4%时,随着DMPA用量的增加,乳液外观呈现由乳白到透明有蓝光的变化趋势,乳液粘度也随之增大。
4,4'-亚甲基双(2-乙基)苯胺(芳香族二胺类扩链剂MOEA)用途
本品为氨基邻位乙基取代的芳香族二胺类扩链剂,与TDI和MDI预聚体有着良好的相容、配伍性,反应速度较快,与E100搭配可用于反应注射成型和聚脲喷涂工艺,制品具有优良的物理以及动态力学性能。用于聚脲弹性防水材料,可有效提高材料的强度、耐植物穿刺和耐老化性能。本品也可用作环氧树脂的固化剂,赋予制品良好的抗张、耐撕裂、电绝缘及耐热等性能。
这是由于预聚体分散在水中后,疏水的分子链段向内收缩形成乳液粒子的核,带有羧基阴离子的亲水基团分布在乳胶粒表面朝向水中;由于粒子的布朗运动,正负离子相伴在粒子表面形成双电层,使得水合离子能够稳定地分散在水中,致使乳液稳定。
随着亲水基团含量的增加,乳液外观发生明显的变化,这是WPU粒子粒径变化的宏观表现所致(即粒径大、阻碍了光线的通过,乳液外观呈发白现象;当分散粒子大小达到纳米级别时,光线可以绕过WPU粒子继续前进,乳液外观呈透明、蓝光现象)。
DMPA是目前使用较广泛的亲水扩链剂,但DMPA熔点高(175~185℃),很难加热溶解,这就需加入溶剂如N-甲基吡咯烷酮(NMP)、丙酮等,NMP沸点高,制备PU后很难除去,而DMPA在丙酮中的溶解度较小,在合成过程中需要加入大量的丙酮,脱酮过程麻烦且脱不干净,给生产过程带来安全隐患。
二羟甲基丁酸(DMBA)作为新一代的亲水性扩链剂,结构与DMPA相似,却能缩短了反应时间,降低能耗,节省能源,其产品性能优越,使水性聚氨酯分散体系在皮革涂饰、胶粘剂、涂料等方面得到更加广泛的应用。
在实验中发现,DMBA与DMPA在聚合物多元醇中的溶解行为受聚合物多元醇相对分子质量影响较小,但二者的溶解温度有很大的差别。DMPA的溶解温度为145~150℃,低于此温度,又慢慢析出,而DMBA的溶解温度为80 ℃,一旦溶解,降低温度无析出现象。这由于DMBA的熔点较低(Tm=108~113 ℃),而DMPA的熔点则较高(Tm=175~188 ℃)。
DMBA作为新一代的亲水性扩链剂,结构与DMPA相似,却能缩短了反应时间,降低能耗,节省能源,其产品性能更加优越,但由于价格远高于DMPA,故工业应用较少。
文章版权:张家港雅瑞化工有限公司
http://www.zjgyrchemical.com