不同链长二胺扩链剂
Yen等用不同链长二胺扩链剂研究非离子型的水性聚氨酯,发现DEA(乙二氨)、DETA(二乙基三胺)、BD(1,42丁二醇)几种不同链长二胺扩链剂中含DETA扩链剂的产物具有最高的Tg,不同链长二胺扩链剂的产物的拉伸性能较BD的大。
广角X射线衍射分析,在不同聚醚含量的聚氨酯弹性体中,在2=20#附近均出现了宽的漫散射峰,这是因为体系中存在大量的非晶或微晶及次晶。两个较强的结晶峰,是PBA链段在共聚物中的不同有序排列的结晶峰。说明合成的聚氨酯材料中存在着部分有序结构,而这种有序结构只能在硬段微区形成。随着软段中聚醚添加量的增加,衍射峰的强度开始减弱,只能观测到一个宽的漫散射峰。
引入聚醚后,两种不同分子结构和分子链长度的软段在聚合过程中随机分布,分子链排布的规整性受到影响,软段结晶受阻,硬段的有序程度减弱,导致硬段微区的氢键作用减弱,并削弱了链段之间吸引力。这也进一步验证了前面的观点,即随着聚醚含量的增加,硬段之间的作用力减弱,拉伸强度下降,但仍存在结晶。
随着软段中聚醚含量的增加,拉伸强度下降,断裂伸长率上升。这是由于在聚氨酯软段中醚类的柔软性高于酯类所致。另外,PBA分子链规整,链段易于结晶,在拉伸时分子链不容易滑动,当软段中混入聚醚后,PBAPTMG混合软段增加了分子链的混乱程度,在拉伸过程中软段的结晶趋势降低,混乱程度提高,也将导致强度下降而断裂伸长率增加。同时,随着聚醚含量的增加,聚酯和聚醚在软段中的排列趋向无规,这种随机的分布排列会导致和硬段之间的组合错乱,使硬段分子链之间的相互作用力减小,导致强度下降而断裂伸长率增加。综上所述,添加聚醚后,聚酯和聚醚两种混合的软段材料和不同的分子链长度可以更好地吸收外界能量,显示出较好的弹性。
中文名称:4,4'-亚甲基双(2-甲基-6-乙基苯胺),扩链剂固化剂MMEA
中文别名:二(3-甲基-4-氨基-6-乙基)苯甲烷; 硬化剂MED; 4,4亚甲基双(2-甲基-6-二乙基苯胺)
4,4'-亚甲基双(2-甲基-6-乙基苯胺),扩链剂固化剂MMEA应用:聚氨酯弹性体、聚脲树脂固化剂及环氧树脂固化剂.
包装: 25kg/桶
随着软段中聚醚添加量的增加,拉伸永久变形下降,而形状回复率增加。材料的拉伸永久变形都维持在85%~90%,形状回复率保持在75%~80%。PBA的分子链规整,较PTMG更易于结晶,在拉伸取向过程中更容易产生应力结晶。当材料发生形变后,软段相可以保留部分结晶,使分子链不可能回复到原来的状态,所以纯聚酯性的聚氨酯弹性体永久形变均较大,w(HS)为35%的拉伸永久变形率为95%。当软段中添加聚醚后,无规的软段分子链排布导致软段结晶遭到破坏,当温度降至Tg以下时,软段无法形成结晶固定形变,从而导致材料保持永久形变的能力下降。
聚醚加入后,PTMG由于分子量小,活动能力强,在70!(Tg+20)能够充分运动,伸展的软段分子可以更有效地吸收外界应力,使分子链较大程度的回复到原来的状态,因此材料的永久变形小,形状回复率增加。
聚醚含量从0到16%的材料的耐水解性能见表1。当软段选用的是纯聚酯PBA时,聚酯易于水解,水解后导致部分高分子链段断裂、强度下降,最终使样品水解后的强度损失较大。添加聚醚以后,由于聚醚的耐水解性优于聚酯,强度损失减小,故聚醚的添加可改善聚氨酯弹性体的水解性。
随着聚醚含量的增加,水解后的强度损失减少。聚醚添加量从0增加到4%时,强度损失由19.5%减少到7%,耐水解性能在很大程度上得到提高。聚氨酯弹性体在应用时,材料的力学性能也是考虑前提,当聚醚含量在4%~5%时,材料除具有较好的耐水解性能外,也具有较好的力学性能。
当w(HS)为31%~35%时,材料的力学性能较优,形状回复率可以达到78%~85%,当w(HS)为35%左右时,形状回复率最高。硬段含量过低或者过高,都导致材料的形状回复性能较差。 (2)软段中加入聚醚后,样品的断裂伸长率提高,并且弹性回复性能也得到改善,永久形变的能力下降。聚醚的引入使材料的耐水解性提高。当聚醚添加量在4%~5%(占软段的质量分数)时,材料的综合性能较优。
文章版权:张家港雅瑞化工有限公司
http://www.zjgyrchemical.com